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1. Introduction

In the past years, various new methods for efficient calculations in QCD have been in-

troduced, motivated by the relation of QCD amplitudes to twistor string theory found

in [1]. In particular these methods include the diagrammatic rules of Cachazo, Svrček

and Witten (CSW) [2], where tree level QCD amplitudes are constructed from vertices

that are off-shell continuations of maximal helicity violating (MHV) amplitudes [3], and

the recursion relations of Britto, Cachazo, Feng and Witten (BCFW) [4, 5] that construct

scattering amplitudes from on-shell amplitudes with external momenta shifted into the

complex plane. The BCFW recursion relations have found numerous applications in tree
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level [6 – 19] and one-loop [20 – 27] calculations in QCD. Extensions to QED [28] and grav-

ity [29 – 33] also have been considered. The relation of the BCFW method to the usual

Feynman diagrams has been clarified in [34, 35] and it has been used to give a proof for

the CSW construction [36]. The main advantages of the BCFW and CSW constructions

are in the simplification of analytical calculations as compared to more traditional off-shell

recursive methods [37].

Most of the literature related to these new methods restricts itself to the all-gluon

amplitude. For calculations of multi-parton scattering amplitudes relevant for phenomeno-

logical applications at upcoming colliders such as the Large Hadron Collider (LHC) it is

desirable to extent these methods towards the full particle content of the Standard Model.

In the CSW approach it has been possible to include single external massive gauge bosons

or Higgs bosons [38 – 41], while the BCFW recursion relations have been successfully ap-

plied to derive multigluon amplitudes involving a pair of massive scalars [9, 11]. As shown

in [42] some helicity amplitudes for massive quarks can be obtained from these scalar am-

plitudes by Ward-identities in super-symmetric-QCD. A compact expression for amplitudes

with a pair of massive scalars or quarks and an arbitrary number of positive helicity gluons

has been found in [43, 13] by a combination of off-shell recursive methods and the BCFW

relations.

On-shell recursion relations for amplitudes involving massive quarks have been consid-

ered in [10], but the proof is restricted to the case where the shifted particles are massless.

It should be noted that expressions for shifts of massive momenta have been stated in [9].

However, Ozeren and Stirling [14] report that they were unable to construct all helicity

combinations of the t̄t → ggg amplitude from on-shell recursion relations. In addition,

already the question of allowed helicities for the shifts of massless quarks does not appear

to be completely settled in the literature [6, 7, 10, 12, 18, 19].

The purpose of this paper is to clarify the situation for on-shell recursion relations

for Born QCD amplitudes. The particle content of QCD are gluons and quarks, where

the latter may be massive or massless. We derive expressions for shifts of spinors for all

particles — massless or not — and investigate the allowed helicity combinations of the

shifted particles. Our findings can be summarised as follows: As in the massless case we

have for each pair of marked particles two possibilities to shift the spinors — a holomorphic

one and an anti-holomorphic one. The two marked particles must not be quarks belonging

to the same fermion line. For each of the four possible helicity assignments of the two

marked particles at least one shift leads to a recursion relation. The only exceptions to

this rule are amplitudes involving solely massive quarks. In this case two-particle shifts are

not sufficient. However, amplitudes consisting only of massive quarks and sufficient many

external legs may be computed recursively from three-particle shifts.

We show that shifts of massive particles can lead to simpler recursion relations than

those considered previously in the literature and use them to derive amplitudes with a pair

of massive quarks, one negative helicity gluon and an arbitrary number of positive helicity

gluons. Using super-symmetric Ward identities we also obtain a more compact form for

the corresponding amplitudes with a pair of massive scalars than known previously.

This paper is organised as follows: In section 2 we introduce our notation together with
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a short review of the colour decomposition of QCD amplitudes and an introduction to the

spinor helicity formalism. Section 3 explains in detail the recursion relation for Born QCD

amplitudes. This is the main result of this paper. The proof of the recursion relation is

given in section 4. In section 5 we discuss applications of the recursion relation and provide

examples. Section 6 contains our conclusions. In appendix A we collected information on

the construction of massless spinors out of light-like four-vectors. Appendix B contains

the discussion of a few exceptional cases, which are needed for the proof of the recursion

relation in section 4.

2. Notation and conventions

In this section we briefly review the colour decomposition of QCD amplitudes and the

spinor helicity formalism.

2.1 Colour decomposition

Amplitudes in QCD may be decomposed into group-theoretical factors (carrying the colour

structures) multiplied by kinematic functions called partial amplitudes [44 – 48]. These

partial amplitudes do not contain any colour information and are gauge-invariant objects.

Although no arguments in this paper rely on colour decomposition, the examples we present

are based on partial amplitudes. By convention we consider all particles as out-going.

In the pure gluonic case tree level amplitudes with n external gluons may be written

in the form

An(1, 2, . . . , n) =

(

g√
2

)n−2
∑

σ∈Sn/Zn

δiσ1
jσ2

δiσ2
jσ3

. . . δiσn jσ1
An (σ1, . . . , σn) , (2.1)

where the sum is over all non-cyclic permutations of the external gluon legs. The quan-

tities An(σ1, . . . , σn), called the partial amplitudes, contain the kinematic information.

They are colour-ordered, e.g. only diagrams with a particular cyclic ordering of the gluons

contribute. The choice of the basis for the colour structures is not unique, and several

proposals for bases can be found in the literature [49, 50]. Here we use the “colour-flow

decomposition” [50, 51]. As a further example we give the the colour decomposition for a

tree amplitude with a pair of quarks:

An+2(q, 1, 2, . . . , n, q̄) =

(

g√
2

)n
∑

Sn

δiqjσ1
δiσ1

jσ2
. . . δiσn jq̄An+2(q, σ1, σ2, . . . , σn, q̄),(2.2)

where the sum is over all permutations of the gluon legs. In squaring these amplitudes a

colour projector

δ̄iiδjj̄ −
1

N
δ̄ij̄δji (2.3)

has to applied to each gluon. While the colour structures of the examples quoted above

are rather simple, the colour decomposition can be become rather involved for amplitudes
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with many pairs of quarks. A systematic algorithm for the colour decomposition and the

diagrams contributing to a single colour structure can be found in ref. [51].

While not strictly necessary, we consider in this paper only colour-ordered partial

amplitudes. These partial amplitudes are cyclic ordered within each colour cluster. The

cyclic order reduces significantly the number of possibilities of dividing n external particles

into two set, such that particle i belongs to one set, while particle j belongs to the other

set.

2.2 Spinors and polarisation vectors

Let us consider two independent Weyl spinors |q+〉 and 〈q + |. These two Weyl spinors

define a light-like four-vector

qµ =
1

2
〈q + |γµ|q+〉. (2.4)

This four-vector can be used to associate to any not necessarily light-like four-vector k a

light-like four-vector k♭:

k♭ = k − k2

2k · q q. (2.5)

The four-vector k♭ satisfies (k♭)2 = 0. We can generalise this construction and associate to

an arbitrary four-vector K a four-vector K♭
m defined through

K♭
m = K −

(

K2 − m2
)

2K · q q, (2.6)

which satisfies
(

K♭
m

)2
= m2. (2.7)

Therefore K♭
m corresponds to the momentum of an on-shell particle with mass m. It is

worth noting that starting from K and constructing directly a light-like four-vector K♭

through eq. (2.5) is the same as first constructing K♭
m by eq. (2.6) and then projecting K♭

m

onto a light-like vector (K♭
m)♭:

(

K♭
m

)♭
= K♭. (2.8)

The two Weyl spinors |q+〉 and 〈q + | are also used as reference spinors in the definition

of the polarisations of the external particles. For massive fermions we take the spinors

as [52, 43]

u(−) =
1

〈p♭ + |q−〉 (p/ + m) |q−〉, ū(+) =
1

〈q − |p♭+〉〈q − | (p/ + m) ,

u(+) =
1

〈p♭ − |q+〉 (p/ + m) |q+〉, ū(−) =
1

〈q + |p♭−〉〈q + | (p/ + m) . (2.9)

These expressions are similar to the ones introduced in [53], the major difference is given by

the fact, that the denominators contain spinor products rather than ordinary square roots.
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The spinor u(p) corresponds to a particle with incoming momentum, therefore it has the

reversed helicity notation compared to the usual conventions [53, 14]. This notation will

turn out to simplify the discussion of the allowed helicity combinations of shifted quark

lines in section 3.5 since the same restrictions apply to outgoing quarks and incoming anti-

quarks. Furthermore, using the conventions (2.9) internal propagators of quarks in the

BCFW relation connect + and − labels, as in the gluon case. We note for completeness

that the spinors v(±) and v̄(±) are given by

v(±) =
1

〈p♭ ∓ |q±〉 (p/ − m) |q±〉, v̄(±) =
1

〈q ∓ |p♭±〉〈q ∓ | (p/ − m) . (2.10)

These spinors satisfy the Dirac equations

(p/ − m)u(λ) = 0, ū(λ) (p/ − m) = 0, (2.11)

the orthogonality relations

ū(λ̄)u(−λ) = 2mδλ̄λ, (2.12)

and the completeness relation
∑

λ

u(−λ)ū(λ) = p/ + m. (2.13)

We further have

ū(λ̄)γµu(−λ) = 2pµδλ̄λ. (2.14)

In the massless limit the definition reduces to

u(−) = |p+〉, ū(+) = 〈p + |,
u(+) = |p−〉, ū(−) = 〈p − |, (2.15)

and the spinors are independent of the reference spinors |q+〉 and 〈q+|. For the polarisation

vectors of the gluons we take

ε+
µ =

〈q − |γµ|k−〉√
2〈q − |k+〉

, ε−µ =
〈q + |γµ|k+〉√

2〈k + |q−〉
. (2.16)

The dependence on the reference spinors which enters through the gluon polarisation vec-

tors will drop out in gauge invariant quantities. In addition, as we have seen, the external

spinors of massless fermions are explicitly independent of the reference spinors. Therefore

we find again that (gauge invariant) amplitudes will not depend on them. However for

massive fermions the reference spinors are related to the quantisation axis of the spin for

this fermion, and the individual amplitudes with label + or − will therefore depend on the

reference spinors |q+〉 and 〈q + |. It is easy to relate helicity amplitudes of massive quarks

corresponding to one choice of reference spinors to another set of reference spinors. If |q̃+〉
and 〈q̃ + | is a second pair of reference spinors we have the following transformation law

(

ū(+, q̃)

ū(−, q̃)

)

=

(

c11 c12

c21 c22

)(

ū(+, q)

ū(−, q)

)

, (2.17)
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where

c11 =
〈q̃ − |/p|q−〉
〈q̃p̃♭〉[p♭q]

, c12 =
m〈q̃q〉

〈q̃p̃♭〉〈p♭q〉 , c21 =
m[q̃q]

[q̃p̃♭][p♭q]
, c22 =

〈q̃ + |/p|q+〉
[q̃p̃♭]〈p♭q〉 . (2.18)

Here, p̃♭ denotes the projection onto a light-like four-vector with respect to the reference

vector 1
2 〈q̃ + |γµ|q̃+〉. Similar, we have for an amplitude with an incoming massive quark

(

u(+, q̃)

u(−, q̃)

)

=

(

c11 −c12

−c21 c22

)(

u(+, q)

u(−, q)

)

. (2.19)

3. The recursion relation

In this section we state the on-shell recursion relation for Born QCD amplitudes. Conven-

tionally, an amplitude depends on a set of external momenta {p1, p2, . . . , pn}. In a first

step we replace each four-vector by two spinors and view a QCD amplitude as a function

of these spinors. In 3.1 we show how to recover the original four-vectors from the spinors.

The recursion relation shifts the spinors by massless spinors. Since we allow for massive

external particles, we have to associate to a pair of two external particles two pairs of mass-

less spinors. A convenient Lorentz-invariant solution is given in 3.2. With these spinors at

hand we state the holomorphic shift and the anti-holomorphic shift in 3.3 and 3.4, respec-

tively. Finally, 3.5 assembles all ingredients and gives the recursion relation. Here we also

present a list of the allowed helicity combinations. The proof of the recursion relation is

deferred to section 4.

3.1 Arguments of the amplitudes

To state the recursion relation it is best not to view a QCD amplitude as a function of

a set of four-momenta {p1, p2, . . . , pn}, but to replace each four-vector pj by two spinors

uj(−) and ūj(+). It is sufficient to specify these two spinors, since the remaining spinors

uj(+) and ūj(−) can be obtained by raising and lowering dotted or undotted indices. If we

change for the moment from the bra-ket notation to the one with dotted/undotted indices

according to

|p+〉 = pA, 〈p + | = pȦ, (3.1)

|p−〉 = pȦ, 〈p − | = pA, (3.2)

we have

u(−) = p♭
A +

m

〈p♭ + |q−〉q
Ḃ , ū(+) = p♭

Ȧ
+

m

〈q − |p♭+〉q
B. (3.3)

u(+) and ū(−) are then given by

ū(−) = p♭A +
m

〈q + |p♭−〉qḂ, u(+) = p♭Ȧ +
m

〈p♭ − |q+〉qB , (3.4)

where p♭A, p♭Ȧ, qḂ and qB are obtained as

p♭A = εABp♭
B, p♭Ȧ = εȦḂp♭

Ḃ
, qḂ = qȦεȦḂ, qB = qAεAB . (3.5)
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The two-dimensional antisymmetric tensor is defined by

εAB = εȦḂ = εAB = εȦḂ =

(

0 1

−1 0

)

. (3.6)

We see that u(−) determines ū(−), and that correspondingly ū(+) determines u(+). Given

the spinors we obtain the four-vector pµ as follows:

pµ =
1

4
Tr

(

γµ
∑

λ

u(−λ)ū(λ)

)

. (3.7)

Eq. (3.7) in combination with eq. (3.4) allows the reconstruction of each four-vector pµ
j

from the two spinors uj(−) and ūj(+).

3.2 Choosing the spinors

To derive the recursion relation we mark two particles i and j, which need not be massless,

with four-momenta pi and pj . To these two four-momenta we associate two light-like

four-momenta li and lj as follows [54, 55]: If pi and pj are massless, li and lj are given by

li = pi, lj = pj. (3.8)

If pi is massless, but pj is massive one has

li = pi, lj = −αipi + pj , αi =
p2

j

2pipj
. (3.9)

The inverse formula is given by

pi = li, pj = αili + lj . (3.10)

If both pi and pj are massive, one has

li =
1

1 − αiαj
(pi − αjpj) , lj =

1

1 − αiαj
(−αipi + pj) . (3.11)

α1 and α2 are given by

αj =
2pipj − sign(2pipj)

√
∆

2p2
j

, αi =
2pipj − sign(2pipj)

√
∆

2p2
i

. (3.12)

Here,

∆ = (2pipj)
2 − 4p2

i p
2
j . (3.13)

The signs are chosen in such a way that the massless limit p2
i → 0 (or p2

j → 0) are

approached smoothly. The inverse formula is given by

pi = li + αjlj , pj = αili + lj. (3.14)

Note that l1, l2 are real for ∆ > 0. For ∆ < 0, l1 and l2 acquire imaginary parts. As a

summary we can associate to any pair (pi, pj) of four-vectors a pair of light-like four-vectors

(li, lj). These light-like four-vectors define massless spinors |li+〉, 〈li + |, |lj+〉 and 〈lj + |.
Explicit formulae for the construction of these spinors are given in appendix A.
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3.3 The holomorphic shift

In an amplitude we single out two particles (massive or not) for special treatment. From

the four-vectors pi and pj we first obtain the two light-like four-vectors li and lj and the

associated massless spinors |li+〉, 〈li + |, |lj+〉 and 〈lj + |. We consider helicity amplitudes.

If particle i is a massive quark or anti-quark, we use |lj+〉 and 〈lj + | as reference spinors

for particle i. If particle j is a massive quark or anti-quark, we use |li+〉 and 〈li + | as

reference spinors for particle j. In this case it is an easy exercise to show that

p♭
i = li, p♭

j = lj . (3.15)

For massive particles the reference momenta define the spin quantisation axis. If particle i

or j is a gluon, we leave the corresponding reference spinors unspecified. Gauge invariant

quantities do not depend on the choice of reference spinors for gluons. In the rest of the

paper we will often choose specific reference spinors. It should be understood that this

choice only affects massive quarks or anti-quarks. The spinors read in detail:

ui(−) = |li+〉 +
mi

[lilj ]
|lj−〉, ūi(+) = 〈li + | + mi

〈lj li〉
〈lj − |,

uj(−) = |lj+〉 +
mj

[lj li]
|li−〉, ūj(+) = 〈lj + | + mj

〈lilj〉
〈li − |. (3.16)

For the holomorphic shift we shift ui(−) and ūj(+), while uj(−) and ūi(+) remain un-

changed:

ui
′(−) = ui(−) − z|lj+〉, ū′

i(+) = ūi(+),

uj
′(−) = uj(−), ū′

j(+) = ūj(+) + z〈li + |. (3.17)

If both particles are massless we have li = pi and lj = pj. Then the shift defined in

eq. (3.17) reduces to the well-known form

|p′i+〉 = |pi+〉 − z|pj+〉, 〈p′i + | = 〈pi + |,
|p′j+〉 = |pj+〉, 〈p′j + | = 〈pj + | + z〈pi + |. (3.18)

The spinors ui
′(−) and ū′

i(+) correspond to an on-shell particle with mass mi and four-

momentum

p′i
µ

= pµ
i − z

2
〈li + |γµ| lj+〉 . (3.19)

The spinors uj
′(−) and ū′

j(+) correspond to an on-shell particle with mass mj and four-

momentum

p′j
µ

= pµ
j +

z

2
〈li + |γµ| lj+〉 . (3.20)

It is worth to examine the requirement to use |lj+〉 and 〈lj + | as reference spinors for

particle i in detail. Assume that we have an arbitrary spin quantisation axis described by

the reference spinors |q+〉 and 〈q + |. As before we perform the shift

ui
′(−) = ui(−) − z|lj+〉, ū′

i(+) = ūi(+). (3.21)
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If we now consider the polarisation sum we find

∑

λ

u′
i(−λ)ū′

i(λ) = p/i + mi − z

(

mi

〈p♭
iq〉

(|q+〉〈lj − | − |lj+〉〈q − |) |lj+〉〈p♭
i + |

|p♭
i−〉〈lj − | 0

)

. (3.22)

As this polarisation sum must have the form

p/′i + mi, (3.23)

we have to require that the entry in the upper left corner vanishes:

|q+〉〈lj − | − |lj+〉〈q − | = 0. (3.24)

Therefore it follows that |q+〉 = λ|lj+〉. The requirement 〈q+ | = λ′〈lj + | follows from sim-

ilar considerations related to the anti-holomorphic shift discussed in the next sub-section.

Because not all helicity combinations can be computed with the holomorphic shift, we have

to fix both reference spinors |q+〉 and 〈q + |, and use the anti-holomorphic shift as well as

the holomorphic shift to compute all helicity combinations. This allows us to recover the

helicity amplitudes for arbitrary reference spinors from (2.17) and (2.19) .

Finally we remark that the spinors should not lead to spurious poles in z in the

analytically continued scattering amplitude A(z). This excludes for instance the choice

u′
i(−) = (/p′i + m)|q−〉/[p♭

iq] and ū′
i(+) = 〈q − |(/p′i + m)/(〈qp♭

i〉 − z〈qlj〉) for |q+〉 6= |lj+〉.
Let k be an intermediate particle where we would like to factorise the amplitude. We

denote by K the off-shell four-momentum flowing through this propagator in the unshifted

amplitude. We define the polarisations with respect to the reference spinors |lj+〉 and

〈li + |:

uK
′(−) =

1

〈K♭ + |li−〉
(

K/′ + mk

)

|li−〉 ,

ū′
K(+) =

1

〈lj − |K♭+〉 〈lj−|
(

K/′ + mk

)

, (3.25)

where

K ′µ = Kµ − z

2
〈li + |γµ|lj+〉, K♭µ = Kµ − 1

2

K2

〈li + |K|lj+〉 〈li + |γµ|lj+〉. (3.26)

K♭ is a light-like four-vector. Note that K♭ = (K ′)♭. Furthermore K ′ is on-shell ((K ′)2 =

m2
k) provided

z =
K2 − m2

k

〈li + |K|lj+〉 . (3.27)

3.4 The anti-holomorphic shift

For the anti-holomorphic shift we modify ūi(+) and uj(−):

ui
′(−) = ui(−), ū′

i(+) = ūi(+) − z〈lj + |,
uj

′(−) = uj(−) + z|li+〉, ū′
j(+) = ūj(+). (3.28)

– 9 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
2

If both particles are massless the shift defined in eq. (3.28) reduces to the form

|p′i+〉 = |pi+〉, 〈p′i + | = 〈pi + | − z〈pj + |,
|p′j+〉 = |pj+〉 + z|pi+〉, 〈p′j + | = 〈pj + |. (3.29)

The spinors ui
′(−) and ū′

i(+) correspond to an on-shell particle with mass mi and four-

momentum

p′i
µ

= pµ
i − z

2
〈lj + |γµ| li+〉 . (3.30)

The spinors uj
′(−) and ū′

j(+) correspond to an on-shell particle with mass mj and four-

momentum

p′j
µ

= pµ
j +

z

2
〈lj + |γµ| li+〉 . (3.31)

Again, let k be an intermediate particle with off-shell four-momentum K. We define the

polarisations now with respect to the reference spinors |li+〉 and 〈lj + |:

uK
′(−) =

1

〈K♭ + |lj−〉
(

K/′ + mk

)

|lj−〉 , ū′
K(+) =

1

〈li − |K♭+〉 〈li−|
(

K/′ + mk

)

,

(3.32)

where

K ′µ = Kµ − z

2
〈lj + |γµ|li+〉, K♭µ = Kµ − 1

2

K2

〈lj + |K|li+〉 〈lj + |γµ|li+〉. (3.33)

K♭ is a light-like four-vector and we have K♭ = (K ′)♭. Furthermore K ′ is on-shell ((K ′)2 =

m2
k) provided

z =
K2 − m2

k

〈lj + |K|li+〉 . (3.34)

3.5 Assembling the ingredients: the recursion relation

We can now state the recursion relation. The starting point is the function

A(z) = An

(

u1(−), ū1(+), λ1, . . . , u
′
i(−), ū′

i(+), λi, . . . , u
′
j(−), ū′

j(+), λj , . . .
)

, (3.35)

where the spinors of particles i and j have been shifted either with the holomorphic shift

or with the anti-holomorphic shift. The amplitude we want to calculate is given by A(0).

If the shifted amplitude A(z) vanishes for z → ∞ we obtain:

An (u1(−), ū1(+), λ1, . . . , un(−), ūn(+), λn) = (3.36)
∑

partitions

∑

λ=±

AL

(

. . . , u′
i(−), ū′

i(+), λi, . . . , iv
′
K(−), iv̄′K(+),−λ

)

× i

K2 − m2
k

AR

(

u′
K(−), ū′

K(+), λ, . . . , u′
j(−), ū′

j(+), λj , . . .
)

,
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where the sum is over all partitions such that particle i is on the left and particle j is on

the right. The momentum K is given as the sum over all unshifted momenta of the original

external particles, which are part of AL. The values of z are given for the holomorphic

shift by eq. (3.27) and for the anti-holomorphic shift by eq. (3.34).

The condition that A(z) has to vanish at infinity can be summarised as follows:

• Particles i and j cannot belong to the same fermion line.

• The holomorphic shift can be used for the helicity combinations (i+, j−), (i+, j+) and

(i−, j−) with the following exceptions:

– The combinations (q+
i , g+

j ), (q̄+
i , g+

j ), (g−i , q−j ) and (g−i , q̄−j ) are not allowed.

– If particle i is a massive quark or anti-quark, the combinations (q+
i , q′j

+),

(q+
i , q̄′j

+), (q̄+
i , q′j

+) and (q̄+
i , q̄′j

+) are not allowed.

– If particle j is a massive quark or anti-quark, the combinations (q−i , q′j
−),

(q−i , q̄′j
−), (q̄−i , q′j

−) and (q̄−i , q̄′j
−) are not allowed.

• The anti-holomorphic shift can be used for the helicity combinations (i−, j+), (i+, j+)

and (i−, j−) with the following exceptions:

– The combinations (g+
i , q+

j ), (g+
i , q̄+

j ), (q−i , g−j ) and (q̄−i , g−j ) are not allowed.

– If particle j is a massive quark or anti-quark, the combinations (q+
i , q′j

+),

(q+
i , q̄′j

+), (q̄+
i , q′j

+) and (q̄+
i , q̄′j

+) are not allowed.

– If particle i is a massive quark or anti-quark, the combinations (q−i , q′j
−),

(q−i , q̄′j
−), (q̄−i , q′j

−) and (q̄−i , q̄′j
−) are not allowed.

In summary there is always at least one allowed shift, unless i and j belong to the same

fermion line or i and j are both massive quarks or anti-quarks. As we are free to choose the

particles i and j, we can compute all Born helicity amplitudes in QCD with two-particle

shifts via recursion relations, except the ones which involve only massive quarks or anti-

quarks. The latter ones may be calculated recursively if one allows more general shifts,

where more than two particles are shifted. This follows directly from the proof of the

recursion relation which we present in section 4. Amplitudes with only massive quarks or

anti-quarks are discussed in detail in section 4.3.

4. Proof of the recursion relation

The standard proof of the BCFW recursion relation is based on Cauchy’s theorem [5]. The

function A(z) is a rational function of z, which has only simple poles in z. Therefore, if

A(z) vanishes for z → ∞, A(z) is given by Cauchy’s theorem as the sum over its residues.

This is just the right hand side of the recursion relation. The essential ingredient for the

proof is the vanishing of A(z) at z → ∞. This property we have to verify for the shifts

stated in the previous section.
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g+
i g−i Q̄+

i Q̄−
i Q+

i Q−
i g+

j g−j Q̄+
j Q̄−

j Q+
j Q−

j

holomorphic 1
z z 1 z 1 z z 1

z z 1 z 1

anti-holomorphic z 1
z z 1 z 1 1

z z 1 z 1 z

Table 1: Behaviour of polarisation vectors and spinors in the large z limit for the holomorphic

and anti-holomorphic shift.

It is relatively easy to show this for the helicity combination (i+, j−) for the holomor-

phic shift and for the helicity combination (i−, j+) for the anti-holomorphic shift. We do

this in section 4.1.

The helicity combinations (i+, j+) and (i−, j−) require a more sophisticated proof. In

section 4.2 we first construct a representation of A(z) with the help of a supplementary

recursion relation and deduct from this representation the large z-behaviour of A(z). For

the proof we borrowed ideas from [9, 20, 29, 36]. The proof presented here does not rely

on additional (unnecessary) assumptions like the presence of two additional gluons with

specific helicities.

4.1 Diagrammatic analysis of the large z behaviour

We now investigate the behaviour of A(z) for large z by a diagrammatic analysis. A gluon

propagator behaves like 1/z, whereas a quark propagator tends towards a constant. The

quark-gluon and the four-gluon vertices are independent of z, whereas the three-gluon

vertex is proportional to z for large z.

The behaviour of the polarisation vectors and spinors are summarised in table 1.

As a first observation we note that a shift of two quarks belonging to the same fermion

line is not allowed. In all diagrams the z-dependence flows along this fermion line, which

consists of quark propagators and quark-gluon vertices. These tend towards a constant

for large z. The large z behaviour of the external spinors tends towards a constant at the

best. Therefore, we conclude that independent of the helicities the function A(z) does not

vanish for z → ∞.

Let us now assume that the two shifted particles belong to different fermion lines, or

that one or both particles are gluons. Therefore we have at least one gluon propagator along

the shifted line, except for the case where the shifted line does not contain any propagators

at all. By a diagrammatic analysis one can easily show that the helicity combination

(i+, j−) behaves like 1/z for z → ∞ for the holomorphic shift, independent of the nature

of the particles i and j. The reversed helicity assignment (i−, j+) behaves like 1/z for the

anti-holomorphic shift. To see this, let us consider as an example the holomorphic shift.

Assume first that the flow of z-dependence in a particular diagram is given by a path made

out entirely of gluons. The most dangerous contribution comes from a path, where all

vertices are three-gluon-vertices. For a path made of n propagators we have n + 1 vertices

and the product of propagators and vertices behaves therefore like z for large z. This
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statement remains true for a path containing only one vertex and no propagators. The

polarisation vectors for the helicity combination (i+, j−) contribute a factor 1/z2, therefore

the complete diagram behaves like 1/z and vanishes therefore for z → ∞. If internally a

gluon propagator is replaced by a quark propagator, we have to change at least two three-

gluon vertices into quark-gluon vertices. This improves the estimate by a factor 1/z. If an

external gluon is replaced by a fermion, we have to change at least one three-gluon vertex

into a quark-gluon vertex. This does not modify the large z behaviour.

4.2 Supplementary recursion relation for the large z behaviour

The cases (i+, j+) and (i−, j−) are more subtle. As an example we consider the case

(i+, j+) with the holomorphic shift. The other cases, (i+, j+) with the anti-holomorphic

shift and (i−, j−) with the holomorphic as well as with the anti-holomorphic shift will be

similar.

We are going to prove that in the case (i+, j+) and for the holomorphic shift the

function A(z) vanishes as z → ∞. We prove this for the case where the spinors ui(−),

ūi(+), uj(−) and ūj(+) are defined with respect to the reference spinors

|qi+〉 = |lj+〉, 〈qj + | = 〈li + |. (4.1)

Compared to section 3.3 we do not require any particular choice for the reference spinors

〈qi + | and |qj+〉. We can write these last two reference spinors as linear combinations of

two basis spinors, and since we are free to choose the normalisation of the reference spinors

we can write them without loss of generality as

〈qi + | = 〈lj + | + λi〈li + |, |qj+〉 = |li+〉 + λj |lj+〉, (4.2)

where λi and λj are complex numbers. A simple calculation shows that we then obtain

with these reference spinors

|p♭
i+〉 = |li+〉 − λi

m2
i

2lilj
|lj+〉, 〈p♭

i + | = 〈li + |,

|p♭
j+〉 = |lj+〉, 〈p♭

j + | = 〈lj + | − λj

m2
j

2lilj
〈li + |. (4.3)

The spinors ui(−), ūi(+), uj(−) and ūj(+) read then

ui(−) = |p♭
i+〉 +

mi

[liqi]
|qi−〉, ūi(+) = 〈li + | + mi

〈lj li〉
〈lj − |,

uj(−) = |lj+〉 +
mj

[lj li]
|li−〉, ūj(+) = 〈p♭

j + | + mj

〈qjlj〉
〈qj − |. (4.4)

The holomorphic shift is chosen as in eq. (3.17):

ui
′(−) = ui(−) − z|lj+〉, ū′

i(+) = ūi(+),

uj
′(−) = uj(−), ū′

j(+) = ūj(+) + z〈li + |. (4.5)

We give a proof by induction in the number of external particles.
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We first show that the three-point functions vanish for z → ∞. We start with the pure

gluon case. A3(g
′
i
+, g′j

+, g+
k ) vanishes identically, whereas A3(g

′
i
+, g′j

+, g−k ) as a function of

z is given by

A3(g
′
i
+
, g′j

+
, g−k ) = i

√
2

[ji]3

[ki] ([jk] + z[ik])
. (4.6)

Clearly, this function vanishes for z → ∞.

Let us now consider the case, where particle i is a gluon and particle j is a quark.

Then the third particle k is necessarily an anti-quark. For a massive fermion line we have

to consider both helicities for particle k. A short calculation shows that with the choice of

reference spinors as in eq. (4.1) we have

A3(g
′
i
+
, Q′

j
+
, Q̄−

k ) = A3(g
′
i
+
, Q̄′

j
+, Q−

k ) = 0,

A3(g
′
i
+
, Q′

j
+
, Q̄+

k ) = A3(g
′
i
+
, Q̄′

j
+, Q+

k ) = 0. (4.7)

These amplitudes certainly vanish for z → ∞. On the other it can be shown that the

amplitudes A3(Q̄
′
i
+, g′j

+, Q−
k ) and A3(Q

′
i
+, g′j

+, Q̄k
−) do not vanish for z → ∞. If the quark

is massive, the same holds for the amplitudes A3(Q̄
′
i
+, g′j

+, Q+
k ) and A3(Q

′
i
+, g′j

+, Q̄k
+).

This places the constraint that if particle i is a quark or an anti-quark, particle j is a gluon

and the two are adjacent, then the helicity combination (i+, j+) cannot be calculated with

the holomorphic shift.

There are a few 4- and 5-point amplitudes, which we treat separately:

A4(g
+
i , g+

j , Q,Q), A4(Q
+
i , g+

j , Q, g), A5(Q
+
i , g+

j , Q,Q′, Q′), A4(Q
+
i , Q′

j
+, Q,Q′). (4.8)

Here Q and Q′ stands either for a quark or an anti-quark and no particular cyclic order is

implied. The amplitudes in eq. (4.8) are the only four- or higher-point amplitudes, where

we cannot choose in addition to the marked particles i and j two additional particles k and

l such that in the set

{i, k, l} (4.9)

no fermion line connects two of the three external particles. These cases are discussed in

appendix B and give rise to the following constraints: The holomorphic shift cannot be

used for the combination (Q+
i , g+

j ). For the combination (Q+
i , Q′

j
+) the holomorphic shift

can only be used if mi = 0.

We now proceed by induction in the number of external particles. We can assume that

there are two additional particles k and l. Since we excluded the special cases in eq. (4.8),

we can also assume that in the set {i, k, l} no two particles belong to the same fermion line.

We first discuss the case, where we can choose the two additional particles with identical

helicities. These are the sub-cases

(i+, j+, k−, l−), and (i+, j+, k+, l+). (4.10)

In these cases we first consider a supplementary recursion relation, which will provide us

with an expression of the amplitude from which we can deduce the large z behaviour. This
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leaves the sub-case, where we cannot choose two additional particles with equal helicity

assignments. In this case k and l have opposite helicities and after a possible relabelling

k ↔ l we can assume that the helicity assignment is (i+, j+, k−, l+). We discuss this

sub-case separately.

We first consider the case (i+, j+, k−, l−). As above we fix as reference spinors |qi+〉 =

|lj+〉 and 〈qj + | = 〈li + |, while 〈qi + | and |qj+〉 are arbitrary. For particles k and l we

choose as reference spinors

|qk+〉 = |ql+〉 = |lj+〉, 〈qk + | = 〈ql + | = 〈li + |. (4.11)

This choice defines p♭
k and p♭

l . We now consider the shift

u′
i(−) = ui(−) − z|lj+〉 − yβk|p♭

k+〉 − yβl|p♭
l+〉,

ū′
j(+) = ūj(+) + z〈li + |,

ū′
k(+) = ūk(+) + yβk〈li + |,

ū′
l(+) = ūl(+) + yβl〈li + |, (4.12)

where βk and βl are chosen as

βk =
〈p♭

l lj〉
〈p♭

lp
♭
k〉

, βl =
〈p♭

klj〉
〈p♭

kp
♭
l 〉

. (4.13)

The coefficients are chosen such that

βk|p♭
k+〉 + βl|p♭

l+〉 = |lj+〉. (4.14)

The function A(y) vanishes at infinity, as each individual diagram vanishes at infinity. The

argument is similar to the one we gave above for the helicity combination (i+, j−): In any

diagram the y-dependence flows through a three-legged path with end-point i, k and l.

Suppose first that all three particles are gluons. The most dangerous diagrams are the

ones, where we have only three-gluon-vertices along the path. Then the combination of

propagators and vertices gives a factor y in the large y-behaviour, while the polarisation

vectors contribute a factor 1/y3. In total this diagram goes like 1/y2 in the large y limit

and therefore vanishes as y goes to infinity. If we replace internally a gluon propagator by

a quark propagator, we have to change at least two three-gluon vertices into quark-gluon

vertices. This improves the estimate by a factor 1/y. If an external gluon is replaced by

a fermion, we have to change at least one three-gluon vertex into a quark-gluon vertex.

This does not modify the large y behaviour. Note that we have excluded the case, where

a fermion line connects two of the three particles i, k and l.

From the fact that A(y) vanishes for y → ∞ we obtain the recursion relation

A(y = 0, z) =
∑

α,λ

AL(yα, z, λ)
i

Pα(z)2 − m2
α

AR(yα, z,−λ), (4.15)

where we dropped arguments not relevant to the discussion here. We will use this formula

to estimate the z-behaviour at infinity. Suppose that i and j are on opposite sides of the

propagator. Then

Pα(z)2 = P 2
α − z〈li + |P/α|lj+〉 (4.16)
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and yα depends linearly on z. If both k and l are on the same side as particle j we have

yα =
P 2

α − m2
α − z〈li + |P/α|lj+〉

βk〈li + |P/α|p♭
k+〉 + βl〈li + |P/α|p♭

l+〉
=

P 2
α − m2

α

〈li + |P/α|lj+〉 − z. (4.17)

A similar formula holds if only one of the particles k or l is on the same side as particle j.

The z-dependence flows through a four-legged path and one can show by a diagrammatic

analysis that each diagram vanishes for z → ∞. We first observe that the product of the

scalar propagator, on which the amplitude is factorised, times the two polarisation vectors

attached to it, behaves like an internal propagator in the large z limit. Let us again start

from the pure gluon case and assume the worst-case scenario of only three-gluon vertices.

The product of propagators and vertices gives a factor z, the three polarisation vectors for

particles i, k and l contribute a factor 1/z3, the polarisation vector for particle j a factor

z. In total the amplitude behaves like 1/z and vanishes in the large z limit. Replacing an

internal gluon propagator by a quark propagator improves the estimate by a factor 1/z.

Replacing an external gluon by a quark does not change the large z-behaviour, as long as

we do not have a fermion line connecting two of the four external particles i, j, k and l.

As above, the cases where a fermion line connects two of the three particles i, k and l are

excluded. In addition we have excluded from the very beginning the case where a fermion

line connects i and j. Therefore the only possibilities, where a fermion line connects two

particles are the ones where a fermion line connects particle j either with particle k or l.

In this case the total contribution from this fermion line behaves like z for z → ∞, while

the rest of the diagram gives at least a factor 1/z2.

Suppose now that particles i and j are on the same side of the propagator, say they are

both in AL. Then yα is independent of z. The reference spinors for particle i are given by

|lj+〉 and an arbitrary 〈qi+ |. For particle j the reference spinors are |qj+〉 and 〈li+ |. Since

AL has fewer legs than A we can use the induction hypothesis and therefore AL vanishes

as z goes to infinity. This completes the proof for the case (i+, j+, k−, l−).

We now consider the case (i+, j+, k+, l+). As reference spinors for particles k and l we

take as above

|qk+〉 = |ql+〉 = |lj+〉, 〈qk + | = 〈ql + | = 〈li + |. (4.18)

We consider the shift

u′
i(−) = ui(−) − z|lj+〉 + y[p♭

kp
♭
l ]|lj+〉,

ū′
j(+) = ūj(+) + z〈li + |,

u′
k(−) = uk(−) + y[p♭

l li]|lj+〉,
u′

l(−) = ul(−) + y[lip
♭
k]|lj+〉. (4.19)

Momentum conservation is satisfied due to the Schouten identity. The shift in y is chosen

such that each individual diagram vanishes for y → ∞. Again we can show with the same

steps as in the (i+, j+, k−, l−) case that A(z) vanishes for z → ∞.

Finally, we discuss the case (i+, j+, k−, l+). Assume first that particles i and j are

massless particles. Then the amplitude is independent of the choice of the reference spinors
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for particles i and j. As reference spinors for particles k and l we take again

|qk+〉 = |ql+〉 = |lj+〉, 〈qk + | = 〈ql + | = 〈li + |. (4.20)

We consider the shift

u′
i(−) = ui(−) − z|lj+〉 − y|p♭

k+〉,
ū′

j(+) = ūj(+) + z〈li + | − y〈p♭
l + |,

ū′
k(+) = ūk(+) + y〈li + |,

u′
l(−) = ul(−) + y|lj+〉. (4.21)

We can show with the same steps as in the (i+, j+, k−, l−) case that A(z) vanishes for

z → ∞. Note that for particle i and j the shift in y is not proportional to the reference

spinors of these particles. Therefore the shift in eq. (4.21) is restricted to massless particles.

This leaves the cases, where particle i or particle j or both are massive particles. In

accordance with eq. (4.9) particles k and l are chosen such that in the set {i, k, l} no

fermion line connects two of the three external particles. There are only very few cases

where k and l must be chosen such that they have opposite helicities. These are the cases

A4(g
+
i , Q+

j , Q±, g∓), A5(q
+
i , Q′

j
+, q−, Q′±, g∓), A6(q

+
i , Q′

j
+, q−, Q′±, Q′′∓, Q′′∓). (4.22)

Here q+
i denotes a massless quark, since the combination (Q+

i , Q′
j
+) where Q+

i is a massive

quark is already excluded. All cases are discussed explicitly in appendix B. It will turn

out that these cases do not lead to additional restriction on the validity of the recursion

relation.

4.3 Amplitudes involving only massive quarks or anti-quarks

The holomorphic and anti-holomorphic two-particle shifts in eq. (3.17) and eq. (3.28) allow

us to calculate recursively all amplitudes except the ones, which consist solely of massive

quarks or anti-quarks. Among those, the four-parton amplitudes A4(Q̄,Q, Q̄′, Q′) are given

by just one Feynman diagram and therefore are most efficiently calculated by a Feynman

diagram calculation. Also the six-quark amplitudes are relatively simple.

We consider now the ones with more than six particles. We select two particles i and

j, not belonging to the same fermion line. As reference spinors for particle i we choose

|qi+〉 = |lj+〉, 〈qi + | = 〈lj + |, (4.23)

while for particle j we choose

|qj+〉 = |li+〉, 〈qj + | = 〈li + |. (4.24)

For all other particles we choose as reference spinors

|qk+〉 = |lj+〉, 〈qk + | = 〈li + |. (4.25)

The helicity combination (i+, j−) can be calculated with the holomorphic shift eq. (3.17),

while the combination (i−, j+) can be calculated with the anti-holomorphic shift eq. (3.28).
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This leaves the combinations (i+, j+) and (i−, j−). We consider first the combination

(i+, j+). As we are considering amplitudes with at least eight external particles, we can

always find two particles k and l, such that in the set {i, k, l} no fermion line connects

two of the three particles and that in addition the particles k and l have the same helicity

assignment. For the helicity combination (i+, j+, k−, l−) we can use the shift

u′
i(−) = ui(−) − zβk|p♭

k+〉 − zβl|p♭
l+〉,

ū′
k(+) = ūk(+) + zβk〈li + |,

ū′
l(+) = ūl(+) + zβl〈li + |, (4.26)

with

βk =
〈p♭

l lj〉
〈p♭

lp
♭
k〉

, βl =
〈p♭

klj〉
〈p♭

kp
♭
l 〉

. (4.27)

This is just the three-particle shift we used to establish the supplementary recursion relation

in section 4.2. For the helicity combination (i+, j+, k+, l+) we can use the shift

u′
i(−) = ui(−) + z[p♭

kp
♭
l ]|lj+〉,

u′
k(−) = uk(−) + z[p♭

l li]|lj+〉,
u′

l(−) = ul(−) + z[lip
♭
k]|lj+〉. (4.28)

Similar considerations apply to the helicity combination (i−, j−).

5. Applications

In this section we present a few examples and applications. We discuss helicity amplitudes

with a pair of massive quarks, zero or one negative helicity gluons and an arbitrary number

of positive helicity gluons. Helicity amplitudes with a pair of massive quarks plus three

gluons can be found in [56].

5.1 Amplitudes with positive helicity gluons

In this section we consider amplitudes with one massive quark pair and an arbitrary number

of positive helicity gluons. These amplitudes are the building blocks for the construction of

amplitudes with negative gluons using on-shell recursion relations. While the amplitudes

for a pair of massive scalars or quarks and an arbitrary number of positive helicity gluons

are known in closed form [11, 43, 42, 13], they serve as a first example to demonstrate

the application of the shifts of momenta of massive quarks. Previous calculations of such

amplitudes considered the shift of two gluons.

If the same spin axis is chosen for the two quarks, there are three non-vanishing am-

plitudes [52]: the helicity conserving amplitudes An(Q±
1 , g+

2 , . . . , Q̄∓
n ), and a helicity flip

amplitude An(Q−
1 , g+

2 , . . . , Q̄−
n ). The amplitude An(Q−

1 , g+
2 , . . . , Q̄+

n ) is related by charge

conjugation to the amplitude An(Q+
1 , g+

2 , . . . , Q̄−
n ). As discussed in section 4 both the helic-

ity conserving and the helicity flip amplitudes can be computed applying the holomorphic
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shift (3.17) with (i, j) = (2, 1). This implies that p2 is chosen as reference momentum for

Q1 and Q̄n, but using the transformation (2.17) it is straightforward to obtain the results

for an arbitrary polarisation. The recursion relation consists of a single term

An(Q±
1 , g+

2 , . . . , Q̄−
n ) = An−1(Q

′
1
±
, g′23

+
, g+

4 , . . . , Q̄−
n )

i

p2,3
2
A3(g

′
(−23)

−
, g′2

+
, g+

3 ), (5.1)

with p2,3 = p2 + p3, since the degree zero amplitudes with more than three gluons vanish

on-shell.

The amplitudes with a massive quark pair with the same spin quantisation axis are

related through super-symmetric Ward identities to amplitudes of massive scalars [42]:

An(Q+
1 , g+

2 , . . . , Q̄−
n ) =

〈p♭
nq〉

〈p♭
1q〉

An(φ+
1 , g+

2 , . . . , φ̄−
n ), (5.2)

An(Q−
1 , g+

2 , . . . , Q̄−
n ) =

〈p♭
1p

♭
n〉

m
An(φ+

1 , g+
2 . . . , φ̄−

n ). (5.3)

The scalar amplitudes satisfy therefore the recursion relation

An(φ+
1 , g+

2 , . . . , φ̄−
n ) = An−1(φ

′
1
+
, g′23

+
, g+

4 , . . . , φ̄−
n )

i

p2,3
2
A3(g

′
(−23)

−
, g′2

+
, g+

3 ). (5.4)

The light-like momenta p♭
1 and p♭

n associated to p1 and pn are given by

p♭
1 = p1 −

m2

2p1p2
p2, p♭

n = pn − m2

2p2pn
p2. (5.5)

The spinors are shifted as

|2+〉 → |2+〉 − z|p♭
1+〉, ū1(+) → ū1(+) + z〈2 + |, (5.6)

where

z =
p2
2,3

〈2 + |/p3|p♭
1+〉

=
〈32〉
〈3p♭

1〉
. (5.7)

Expressions containing the intermediate shifted momentum p′2,3 can be simplified similar

to the massless case [4]

|p′2,3
♭−〉 = |p♭

2,3−〉 =
/p2,3 |p♭

1+〉
〈p♭

2,3p
♭
1〉

=
/p2,3/p1 |2−〉

〈p♭
2,3 − |/p1|2−〉

, |p′2,3
♭
+〉 = |p♭

2,3+〉 =
/p2,3 |2−〉
[p♭

2,32]
. (5.8)

A particular compact form of the scalar amplitudes has been obtained in [13]:

An(φ+
1 , g+

2 , . . . , φ̄−
n ) = 2n/2−1im2

〈2 + |∏n−2
j=3 (y1,j − /pj/p1,j−1) |(n − 1)−〉

y1,2y1,3 . . . y1,n−2〈23〉〈34〉 . . . 〈(n − 2)(n − 1)〉 ,
(5.9)

where

p1,j =

j
∑

1

pj, y1,j = p2
1,j − m2. (5.10)
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It is an instructive exercise to verify that eq. (5.9) is a solution of eq. (5.4):

An(φ+
1 , g+

2 , . . . , φ̄−
n ) = An−1(φ

′
1
+
, g′23

+
, g+

4 , . . . , φ̄−
n )

i

p2,3
2
A3(g

′
(−23)

−
, g′2

+
, g+

3 ) (5.11)

= 2n/2−1i3m2
〈p♭

2,3 + |
∏n−2

j=4 (y1,j − /pj/p1,j−1) |(n − 1)−〉
y1,3 . . . y1,n−2〈p♭

2,34〉〈45〉 . . . 〈(n − 2)(n − 1)〉
1

〈23〉[32]
[32]3

[−p♭
2,33][2(−p♭

2,3)]

= 2n/2−1im2
〈2 + |/p1/p2,3

∏n−2
j=4 (y1,j − /pj/p1,j−1) |(n − 1)−〉[32]2

y1,3 . . . y1,n−2〈23〉〈2 + |/p2,3|4+〉〈45〉 . . . 〈(n − 2)(n − 1)〉〈2 + |/p1/p2,3|3−〉

= 2n/2−1im2
〈2 + |∏n−2

j=3 (y1,j − /pj/p1,j−1) |(n − 1)−〉
y1,2 . . . y1,n−2〈23〉 . . . 〈(n − 2)(n − 1)〉 .

In the last step we have used the identity [13]

〈2+| /p1/p2,3 = 〈2+| (y1,3 − /p3/p1,2) (5.12)

to extend the product in the numerator down to j = 3. This example shows that the shift

of a massive quark leads to a computation similar to one for massless particles.

5.2 Amplitudes with one negative helicity gluon adjacent to a massive quark

In this section we consider amplitudes

An(Qλ1

1 , g−2 , g+
3 , . . . , g+

n−1, Q̄
λn
n ) (5.13)

with a pair of massive quarks, a gluon with negative helicity adjacent to a quark and an

arbitrary number of positive helicity gluons. As reference spinors for the massive quarks

we choose

|q1+〉 = |qn+〉 = |2+〉, 〈q1 + | = 〈qn + | = 〈2 + |. (5.14)

The light-like momenta p♭
1 and p♭

n associated to p1 and pn are given by

p♭
1 = p1 −

m2

2p1p2
p2, p♭

n = pn − m2

2p2pn
p2. (5.15)

For the recursion relation we consider the holomorphic shift (3.16) with (i, j) = (1, 2). The

spinors are shifted as

u1(−) → u1(−) − z|2+〉, 〈2 + | → 〈2 + | + z〈p♭
1 + |. (5.16)

The recursion relation reads

An(Qλ1

1 , g−2 , g+
3 , . . . , g+

n−1, Q̄
λn
n ) (5.17)

=
n−1
∑

j=3

An−j+2(Q
′λ1

1 , g′2,j
+
, g+

j+1, . . . , g
+
n−1, Q̄

λn
n )

i

p2
2,j

Aj(g
′
−(2,j)

−
, g′2

−
, g+

3 , . . . , g+
j )

where in the j’th term

zj = −
p2
2,j

〈p♭
1 + |/p2,j |2+〉

. (5.18)
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The only ingredients entering the recursion relation (5.17) are the gluonic MHV amplitudes

and the quark amplitudes with positive helicity gluons (5.9). The unknown functions do

not enter themselves on the right hand side, in contrast to the relations obtained from

shifts of gluon momenta [11]. In writing (5.17) we have used that the degree zero gluon

amplitudes with more than three external legs vanish on-shell and that the three point

degree zero vertex vanishes if an anti-holomorphic spinor is shifted.

From super-symmetric Ward identities we obtain [42]

A(Q+
1 , g+

2 , . . . , g−j , . . . , Q̄+
n ) = 0, (5.19)

A(Q+
1 , g+

2 , . . . , g−j , . . . , Q̄−
n ) =

〈p♭
nj〉

〈p♭
1j〉

An(φ+
1 , g+

2 , . . . , g−j , . . . , φ̄−
n ), (5.20)

A(Q−
1 , g+

2 , . . . , g−j , . . . , Q̄+
n ) = −〈p♭

1j〉
〈p♭

nj〉An(φ−
1 , g+

2 , . . . , g−j , . . . , φ̄+
n ). (5.21)

Therefore the amplitude for the quark helicities (Q+
1 , Q̄+

n ) vanishes. This follows also from

the recursion relation (5.17). In this case the right-hand-side of eq. (5.17) equals zero,

since the quark-gluon amplitude with only positive helicity labels vanishes.

Furthermore, eq. (5.20) and eq. (5.21) can be used to relate the helicity combinations

(Q+
1 , Q̄−

n ) and (Q−
1 , Q̄+

n ). It follows that only the helicity combinations (Q±
1 , Q̄−

n ) need to

be considered.

Inserting the explicit expressions for the sub-amplitudes into (5.17) we obtain for the

helicity conserving amplitude

An(Q+
1 , g−2 , g+

3 , . . . , g+
n−1, Q̄

−
n ) = 2n/2−1i

〈p♭
n2〉

〈p♭
12〉

1

〈23〉 . . . 〈(n − 2)(n − 1)〉×

n−1
∑

j=3

〈2 − |/p1/p2,j |2+〉2
p2
2,j〈2 − |/p1/p2,j |j+〉

(

δj,n−1 + δj 6=n−1
m2〈2 − |/p2,j |Φj+1,n−〉〈j(j + 1)〉

y1,j〈2 − |/p1/p2,j |(j + 1)+〉

)

(5.22)

where δj 6=n−1 = 1 − δj,n−1 and we used a short-hand notation for the frequently occurring

quantity

|Φk,n−〉 =
n−2
∏

j=k

(

1 − /pj/p1,j

y1,j

)

|(n − 1)−〉 . (5.23)

Intermediate expressions containing spinors of the shifted momentum p′2,j have been sim-

plified according to

|p′2,j
♭
+〉 = |p♭

2,j+〉 =
/p2,j/p1 |2+〉

〈p♭
2,j + |/p1|2+〉

, |p′2,j
♭−〉 = |p♭

2,j−〉 =
/p2,j |2+〉
〈p♭

2,j2〉
. (5.24)

Multiplying the result (5.22) by a factor 〈p♭
12〉/〈p♭

n2〉 results in a new representation of

the corresponding amplitude with a pair of massive scalars. Compared to a previous

computation of this amplitude in eq. (39) of [11], our result has a similar structure but

is simpler since we used the more compact expression (5.9) as input. Furthermore we

obtained the result directly from known quantities whereas in a calculation using only

shifts of gluons [11] a much more complicated procedure of iterated shifts is necessary.
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The helicity flip amplitude is obtained with only small modifications:

An(Q−
1 , g−2 , g+

3 , . . . , g+
n−1, Q̄

−
n ) = 2n/2−1i

〈p♭
1p

♭
n〉

m

1

〈23〉 . . . 〈(n − 2)(n − 1)〉 × (5.25)

n−1
∑

j=3

〈2 − |/p1/p2,j|2+〉2
p2
2,j〈2 − |/p1/p2,j |j+〉

(

1 + p2
2,j

〈2p♭
n〉

〈2 − |/p2,j/p♭
1|p♭

n+〉

)

×
(

δj,n−1 + δj 6=n−1
m2〈2 − |/p2,j |Φj+1,n−〉〈j(j + 1)〉

y1,j〈2 − |/p1/p2,j |(j + 1)+〉

)

.

6. Summary and conclusions

In this paper we considered on-shell recursion relations for Born QCD amplitudes. We

put particular emphasis on amplitudes with several pairs of quarks and massive quarks

and gave a detailed description on how to shift the external particles in spinor space. For

massive quarks this implies a particular choice of reference spinors, which define the spin

quantisation axis. We found that all Born QCD amplitudes, which have at least some

external particles which are not massive quarks, can be computed by on-shell recursion

relations using two-particle shifts. Amplitudes with only massive quarks can be computed

recursively from three-particle shift. We gave a detailed proof of the validity of the recursion

relation. As an application we considered helicity amplitudes including a pair of massive

quarks, zero or one negative helicity gluons and an arbitrary number of positive helicity

gluons.
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A. Spinors

We define the light-cone coordinates as

p+ = p0 + p3, p− = p0 − p3, p⊥ = p1 + ip2, p⊥∗ = p1 − ip2. (A.1)

In terms of the light-cone components of a light-like four-vector, the corresponding massless

spinors 〈p ± | and |p±〉 can be chosen as

|p+〉 =
e−i φ

2

√

|p+|

(

−p⊥∗

p+

)

, |p−〉 =
e−i φ

2

√

|p+|

(

p+

p⊥

)

,

〈p+| = e−i φ
2

√

|p+|
(−p⊥, p+) , 〈p−| =

e−i φ
2

√

|p+|
(p+, p⊥∗) , (A.2)

where the phase φ is given by

p+ = |p+| eiφ. (A.3)
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If p+ is real and p+ > 0 we have the following relations between a spinor corresponding to

a vector p and a spinor corresponding to a vector (−p):

|(−p)±〉 = i |p±〉 ,

〈(−p)±| = i 〈p±| . (A.4)

Therefore the spinors of massive quarks and anti-quarks are related by u(−k,±) = iv(k,±)

and ū(−k,±) = iv̄(k,±). The polarisation vectors of the gluons are unchanged under the

reversal of the momentum. Spinor products are denoted as

〈pq〉 = 〈p − |q+〉 = pAqA, [qp] = 〈q + |p−〉 = qȦpȦ. (A.5)

B. Exceptional cases

For the exceptional cases we consider as an example the helicity configuration (i+, j+) with

the holomorphic shift. Similar considerations apply to the anti-holomorphic shift and to

the configuration (i−, j−) with both types of shifts. The exceptional cases have two origins:

First, for the helicity configuration (i+, j+) with the holomorphic shift we have to consider

the cases where we cannot choose to additional particles k and l, such that in the set

{i, k, l} (B.1)

no fermion line connects two of the three external particles. These are the cases listed

in eq. (4.8). Secondly, we have to consider the cases, where particle i or particle j is a

massive quark or anti-quark and one cannot choose two additional particles k and l with

equal helicities. These are the cases listed in eq. (4.22).

The exceptional cases are all limited to amplitudes with no more than six external

particles, We discuss these amplitudes case by case. We start with the cases related to

eq. (4.8) and discuss at the end the cases of eq. (4.22).

a) The case A4(Q, g+
i , g+

j , Q̄): We consider the relevant helicity amplitudes for massive

quarks. We have for the unshifted amplitudes

A4(Q
+
1 , g+

2 , g+
3 , Q̄+

4 ) = −2i
m〈q1q4〉

〈q1p♭
1〉〈p♭

4q4〉
[23]

〈23〉
m2

2p1p2
,

A4(Q
+
1 , g+

2 , g+
3 , Q̄−

4 ) = 2i
〈q1 − |p4|q4−〉
〈q1p♭

1〉[p♭
4q4]

[23]

〈23〉
m2

2p1p2
,

A4(Q
−
1 , g+

2 , g+
3 , Q̄+

4 ) = −2i
〈q1 + |p1|q4+〉
[q1p

♭
1]〈p♭

4q4〉
[23]

〈23〉
m2

2p1p2
,

A4(Q
−
1 , g+

2 , g+
3 , Q̄−

4 ) = 2i
〈q1 + |p1p4|q4−〉

[q1p
♭
1][p

♭
4q4]

[23]

〈23〉
m

2p1p2
. (B.2)

The massless case is included as the special case m = 0, in which all four helicity

amplitudes vanish. For the holomorphic shift we have the substitution

|2+〉 → |2+〉 − z|3+〉,
〈3 + | → 〈3 + | + z〈2 + |. (B.3)
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One observes that all non-vanishing helicity amplitudes fall off as 1/z for large z due

to the factor 1/(2p1p2). This case does not lead to any restrictions.

b) The case A4(Q
+
i , g+

j , g, Q̄): This case is already excluded, as i and j are adjacent.

c) The case A4(Q
+
i , g, g+

j , Q̄): Apart from the helicity amplitudes A4(Q
+
1 , g+

2 , g+
3 , Q̄+

4 )

and A4(Q
+
1 , g+

2 , g+
3 , Q̄−

4 ), which were already given in eq. (B.2), we need the following

two amplitudes:

A4(Q
+
1 , g−2 , g+

3 , Q̄+
4 ) = 2i

m〈q1q4〉
〈q1p

♭
1〉〈p♭

4q4〉
〈2 − |/p4|3−〉

2p1p2

(〈q12〉〈2q4〉
〈23〉〈q1q4〉

− 〈2 − |/p4|3−〉
s23

)

,

A4(Q
+
1 , g−2 , g+

3 , Q̄−
4 ) =

2i

〈q1p
♭
1〉[p♭

4q4]

〈2 − |/p4|3−〉
2p1p2

×
(〈2 − |/p4|3−〉〈q1 − |/p4|q4−〉

s23
− 〈q12〉〈2 − |/p4|q4−〉

〈23〉

)

.(B.4)

For the holomorphic shift we have |q1+〉 = |3+〉 and the substitution

|p♭
1+〉 → |p♭

1+〉 − z|3+〉,
〈3 + | → 〈3 + | + z〈p♭

1 + |. (B.5)

We observe that all helicity amplitudes go to a constant for z → ∞. Therefore these

helicity amplitudes cannot be computed with the holomorphic shift. As the proof

for the recursion relation for the helicity combination (i+, j+) is based on induction,

we have to exclude for the holomorphic shift all combinations, where particle i is a

quark or an anti-quark and particle j is a gluon.

d) Five-parton amplitudes: The five-parton amplitudes of eq. (4.8) are the following:

– The cases A5(Q̄
+
i , Q, g+

j , Q̄′, Q′) and A5(Q̄,Q+
i , g+

j , Q̄′, Q′);

– The cases A5,sl(Q̄
+
i , Q, g+

j ; Q̄′, Q′) and A5,sl(Q̄,Q+
i , g+

j ; Q̄′, Q′): These are par-

tial amplitudes, where the particles (Q̄,Q, g) form one colour cluster, while the

particles (Q̄′, Q) form a second colour cluster.

– The cases A5,sl(Q̄
+
i , Q; g+

j , Q̄′, Q′) and A5,sl(Q̄,Q+
i ; g+

j , Q̄′, Q′): These are par-

tial amplitudes, where the particles (Q̄′, Q′, g) form one colour cluster and the

particles (Q̄,Q) form a second colour cluster.

In view of the conclusions from case c) above, all these cases are already excluded,

as particle i is either a quark or an anti-quark, while particle j is a gluon.

e) The cases A4(Q̄,Q+
i , Q̄′

j
+, Q′) and A4(Q̄,Q+

i , Q̄′, Q′
j
+): We first consider
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A4(Q̄,Q+
i , Q̄′

j
+, Q′). The relevant unshifted amplitudes are:

A4(Q̄
−
1 , Q+

2 , Q̄′
3
+, Q′

4
−) =

2i

〈q2p♭
2〉[p♭

1q1][q4p♭
4]〈p♭

3q3〉(p1 + p2)2
(B.6)

×(〈q2 − |/p2/p3|q3+〉〈q4 + |/p4/p1|q1−〉
−m2

2〈q4 + |/p4|q2+〉〈q1 + |/p3|q3+〉
−m2

3〈q2 − |/p2|q4−〉〈q3 − |/p1|q1−〉 + m2
2m

2
3〈q2q3〉[q4q1]),

A4(Q̄
−
1 , Q+

2 , Q̄′
3
+, Q′

4
+) =

2im3

〈q2p♭
2〉[p♭

1q1]〈q4p♭
4〉〈p♭

3q3〉(p1 + p2)2

×(〈q2 − |/p2/p3|q3+〉〈q4 − |/p1|q1−〉
+〈q2 − |/p2/p4|q4+〉〈q3 − |/p1|q1−〉
+m2

2〈q2q4〉〈q1 + |/p3|q3+〉 + m2
2〈q2q3〉〈q4 − |/p4|q1−〉),

A4(Q̄
+
1 , Q+

2 , Q̄′
3
+, Q′

4
−) =

2im2

〈q2p
♭
2〉〈p♭

1q1〉[q4p
♭
4]〈p♭

3q3〉(p1 + p2)2

×(〈q2 − |/p4|q4−〉〈q3 − |/p3/p1|q1+〉
−〈q2 − |/p2/p3|q3+〉〈q4 + |/p4|q1+〉
−m2

3〈q2q3〉〈q4 + |/p1|q1+〉 + m2
3〈q3q1〉〈q2 − |/p2|q4−〉),

A4(Q̄
+
1 , Q+

2 , Q̄′
3
+, Q′

4
+) =

2im2m3

〈q2p♭
2〉〈p♭

1q1〉〈q4p♭
4〉〈p♭

3q3〉(p1 + p2)2

× (−〈q2q4〉〈q3 − |/p3/p1|q1+〉 − 〈q4q1〉〈q2 − |/p2/p3|q3+〉
−〈q2q3〉〈q4 − |/p4/p1|q1+〉 − 〈q3q1〉〈q2 − |/p2/p4|q4+〉) ,

For the holomorphic shift we have |q2+〉 = |l3+〉 and 〈q3+| = 〈l2+|. As a consequence

〈p♭
2 + | = 〈l2 + | and |p♭

3+〉 = |l3+〉. (B.7)

We shift

|p♭
2+〉 → |p♭

2+〉 − z|l3+〉,
〈p♭

3 + | → 〈p♭
3 + | + z〈l2 + |. (B.8)

We can summarise the conditions under which the individual helicity amplitudes vanish

for z → ∞ as follows:

A4(Q̄
−
1 , Q+

2 , Q̄′
3
+, Q′

4
−): m2 = 0, or 〈q1 + | = 〈l2 + |.

A4(Q̄
−
1 , Q+

2 , Q̄′
3
+, Q′

4
+): m2 = 0, or m3 = 0, or 〈q1 + | = 〈l2 + |, or |q4+〉 = |l3+〉.

A4(Q̄
+
1 , Q+

2 , Q̄′
3
+, Q′

4
−): m2 = 0.

A4(Q̄
+
1 , Q+

2 , Q̄′
3
+, Q′

4
+): m2 = 0, or m3 = 0, or |q4+〉 = |l3+〉.

We are interested in computing for the combination (i+, j+) all helicity combinations with

respect to the remaining particles. Therefore the common requirement is m2 = 0. In other

words, for the combination (q+
i , q̄+

j ) the case where particle i is a massive quark has to be

excluded.
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If we now consider the case A4(Q̄,Q+
i , Q̄′, Q′

j
+), we find in complete analogy again the

requirement m2 = 0. Therefore we also exclude the combination (q+
i , q+

j ) where particle i

is a massive quark.

f) The case A4(Q
+
j , g, g+

i , Q̄): This is an additional case related to eq. (4.22). We are

only interested in the case, where the two additional particles have opposite helicities.

These are the amplitudes A4(Q
+
1 , g+

2 , g+
3 , Q̄−

4 ) and A4(Q
+
1 , g−2 , g+

3 , Q̄+
4 ). One easily

shows that both amplitudes vanish as 1/z2 for z → ∞.

g) The case A4(Q
+
j , g+

i , g, Q̄): This is again a case related to eq. (4.22). We are only

interested in the case, where the two additional particles have opposite helicities.

These are the amplitudes A4(Q
+
1 , g+

2 , g+
3 , Q̄−

4 ) and A4(Q
+
1 , g+

2 , g−3 , Q̄+
4 ). Both ampli-

tudes vanish as 1/z for z → ∞.

h) The cases A5(q
+
i , Q′

j
+, q−, Q′±, g∓) and A6(q

+
i , Q′

j
+, q−, Q′±, Q′′∓, Q′′∓). These cases

are again related to eq. (4.22). There are several partial amplitudes which we would

have to consider. In this case it is simpler to discuss groups of Feynman diagrams and

show that they vanish in the limit z → ∞. We group the Feynman diagrams con-

tributing to A5(q
+
i , Q′

j
+, q−, Q′±, g∓) or A6(q

+
i , Q′

j
+, q−, Q′±, Q′′∓, Q′′∓) into three

sets: Set 1 consists of all diagrams, where the z-dependence flows through only one

propagator. Set 2 consists of all diagrams, where the z-dependence flows through

more than one propagator and which do not contain a three-gluon vertex. Finally,

set 3 consists of all diagrams which contain a three-gluon vertex.

With arguments similar to the ones given in case e) and f) one shows that the contribution

from set 1 vanishes for z → ∞. To see this, note that the five and six-point diagrams in set

1 can be obtained from the four-quark amplitudes discussed previously by setting m2 = 0

and replacing one of the external spinors by an off-shell quark current.

The contribution from set 2 vanishes for z → ∞ since there are at least two z-dependent

propagators and no z-dependent vertices. Finally, a short calculation reveals that also the

contribution from set 3 vanishes for z → ∞.
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